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Abstract 
A production inventory model has been developed in this paper, basing on constant production 
rate and market demand, which varies time to time. Seeing the demand pattern the proposed 
model has been formulated in a power pattern which can be expressed in a linear or exponential 
form. The model finds the total average optimum inventory cost and optimum time cycle. The 
model also considers the small amount of decay. Without having backlogs, production starts. 
Reaching at the desired level of inventories, it stops production. After that due to demands along 
with the deterioration, it initiates its depletion and after certain periods the inventory gets zero. 
The model has also been justified with proving the convex property and by giving a numerical 
example with the sensitivity test. 
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1. Introduction 
In last few decades, inventory problems have been studied in a large scale. Inventory is related to stock the items 
before delivering to the customers. If we visualize our daily needs, we can see that these needs are of two kinds 
as far as deterioration or decay is concerned. Items like radioactive substances, food grains, fashionable items, 
pharmaceuticals etc. are one kind, which have finite shelf-life, i.e. limited life once in the shelf, or have a suffi-
cient deterioration after a particular time. On the other hand, the items like bricks, steels, heavy woods etc. are 
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the other kind which does not have that much of deterioration the one mentioned before. Due to the limited 
shelf-life and market demand, the stock level or inventory continuously decreases and in this way deterioration 
occurs. This deterioration affects the inventory seriously and inventory cost increases. To make the inventory 
cost at optimum level i.e. to get the minimum inventory cost, a suitable inventory model is required which suits 
to meet the actual demand in the market. In minimizing inventory cost this paper proposes an inventory model 
with power demand, small amount of decay and constant production rate, whereas the existing models very of-
ten ignore the production rate; instead those consider the instantaneous replenishment rate. The power demand 
defines that kind of demand which varies with change of power in the power function.  

The organizations give due importance to few parameters which affect the model. Like, in this proposed 
model power demand has been considered as the market may have a demand of linear type, again shortly it may 
have the demand of exponential function. The linear demand means that the firms receive demand either in an 
increasing or decreasing way, but gradually, not suddenly, i.e. demand as a linear function. Again, the exponen-
tial demand means the demand either in an exponentially increasing way or exponentially decreasing way sud-
denly. It may be clarified more giving an example, like, ex  is an exponential demand. If the value of x increas-
es, the value of ex  increases geometrically. Again 2x can be treated as linear demand as the value of x increas-
es, the value of 2x increases slowly. To develop a new model, we have considered that the production rate is 
constant and greater than demand rate at any time. Production starts when inventory level is zero. Inventory lev-
el is highest at 1T t=  and after this point, the inventory depletes quickly due to demand only. Demand is con-
sidered a type of power pattern in this paper i.e. the form of linear or exponential. For unit inventory, amount of 
decay rate is very small and constant. 

Satisfying the convex property and using a numerical example, the paper could justify that the objective of 
formulating this model is achieved. The objective of the proposed model is to get the optimum inventory cost 
and optimum time cycle by introducing a time dependent inventory model with constant production rate and 
power demand. The paper subsequently advances with literature review, assumptions, notations used in the 
model, development of the model, numerical illustration, sensitivity analysis, conclusion and suggestions for 
future work in this field. 

2. Literature Review 
Many researchers have work in the field of inventory problems or in production inventory model to solve the 
real life problems by building the suitable inventory models. On ground, the business institution faces various 
types of demand. Demand may be linear, quadratic, exponential, time dependent, level or stock dependent, price 
dependent etc. Basing on the demand pattern, the firms decide how much to produce and when to produce. In-
itially, Harris [1] discusses inventory model in 1915. Whitin [2] was the first researcher to develop the inventory 
model for fashionable goods considering its little decay in the inventory. Ghare and Schrader [3] first pointed 
out the effect of decay in inventory analysis and discovered the economic order quantity (EOQ) model. They 
showed the nature of the consumption of the deteriorating items. Sarker et al. [4] explained an inventory model 
where demand was a composite function consisting of a constant component and a variable component propor-
tional to inventory level in a period in which decay was exponential and inventory was positive. Teng et al. [5] 
developed the model with deteriorating items and shortages assuming that the demand function was positive and 
fluctuating with respect to time. Skouri and Papachristos [6] discussed a continuous review inventory model 
considering the five costs as deterioration, holding, shortage, opportunity cost due to the lost sales and the reple-
nishment cost due to the linearly dependency on the lot size. Chund and Wee [7] developed an integrated two 
stages production inventory deteriorating model for the buyer and the supplier on the basis of stock dependent 
selling rate considering imperfect items and just in time (JIT) multiple deliveries. Applying inventory reple-
nishment policy Mingbao and Wang [8] expressed the inventory model for deteriorating items with trapezoidal 
type demand rate, where the demand rate is a piecewise linearly functions. Hassan and Bozorgi [9] developed 
the location of distribution centers with inventory. Chang and Dye [10] expressed an inventory model with dete-
riorating items, with time varying demand and partial backlogging. Tripathy and Mishra [11] discuss the inven-
tory model with ordering policy for weibull deteriorating items, quadratic demand, and permissible delay in 
payments. Sarkar et al. [12] introduced and inventory model with finite replenishment rate, trade credit policy 
and price discount offer. Khieng et al. [13] presented a production model for the lot-size, order level inventory 
system with finite production rate and the effect of decay. Ekramol [14] [15] considered various production rates 
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assuming the demand is constant. Mishra et al. [16] explained an inventory model for deteriorating items with 
time dependent demand and time varying holding cost under partial backlogging. Aggarwal [17] developed an 
order level inventory model for a system constant rate of deterioration. Shiraj [18] discussed the effect of just in 
time manufacturing system on EOQ model. Sivazlian and Stenfel [19] determined the optimum value of time 
cycle by using the graphical solution of the equation to obtain the economic order quantity model. Shah and 
Jaiswal [20] and Dye [21] established an inventory model by considering demand as a function of selling price 
and three parameters of Weibull rate of deterioration. Billington [22] discussed classic economic production 
quantity (EPQ) model without backorders or backlogs. Pakkala and Achary [23] established a deterministic in-
ventory model for deteriorating items with two warehouses, while the replenishment rate was finite, demand was 
uniform and shortage was allowed. Abad [24] discussed regarding optimal pricing and lot sizing under condi-
tions of perish ability and partial backordering. Sing and Pattanak [25]-[27] developed the model for deteriora-
tion and time dependent quadratic demand under permissible delay in payment, whereas, we have used the ex-
ponential demand with constant production, but ignoring the payment aspect. Amutha and Chandrasekaran [28] 
formulated the inventory model with deterioration items, quadratic demand and time dependent holding cost. 
But in our proposed model, we have emphasized on the production rate, power demand and constant holding 
cost. Ouyang and Cheng [29] explained the inventory model for deteriorating items with exponential declining 
demand and partial backlogging [30]. Dave and Patel introduced an inventory model for deteriorating Items with 
time proportional demand, whereas in our proposed model we have included demand in a power pattern.  

3. Development of the Model 
To develop the proposed model it needs numbers of notations or symbols to clarify the assumptions considered 
and description explained in this paper. The notations or symbols used in this paper are cited in Table 1 below. 

There may be various types of demand of different types of items in the market. At times it may be linear. 
Again within vary short span of time it may be changed into exponential type of demand. Taking this type of 
situation into cognizance, this model is developed. The model is suitable for those kinds of products which have 
finite shelf-life and ultimately causes the products decay. At the beginning, while time 0T = , the production 
starts with zero inventory with the rate λ  which remains constant for entire production cycle. We have consi-
dered the demand as a power function which will be in various forms due to the different values of n. Say for 
example, if we consider 1n = , the demand function nab  will be linear and for 2n = , it will be exponential. 
We build up the model by considering the demand as power function in general. Here, demand function in Fig-
ure 1 indicates the linear function as a kind of power function: 

 
Table 1. Notations. 

Ser Notations Description 

1 λ  Production rate. 

2 nab  Demand rate at time T where ,a b  is any positive integer and 0,1,2,n =   satisfying the condition nabλ > . 

3 µ  Very small amount of constant decay rate for unit inventory. 

4 ( )I θ  Inventory level at instant θ . 

5 1I  Un-decayed inventory at 0T =  to 1t . 

6 2I  Un-decayed inventory at 1T t=  to 1T . 

7 1D  Deteriorating inventory at 0T =  to 1t . 

8 2D  Deteriorating inventory at 1T t=  to 1T . 

9 Q  Inventory level at time T which depicts 0 and 1Q  respectively at 0T =  and 1t . 

10 dθ  Vary small portion of instant θ . 

11 0K  Set up cost. 

12 h  Average holding cost. 

13 ( )1TC Q  Total cost in terms of 1Q . 

14 1Q∗

 Optimum order quantity. 

15 1T ∗

 Optimum order interval. 
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Figure 1. Inventory model with linear demand. 

 
During the period, 0T =  to 1t , the inventory increases at the rate of ( )nab Iµλ µ θ− − , as nab  is the de-

mand in the market and ( )Iµ θ  is the decay of ( )I θ  inventories at instant θ  where, µ  is the decay of unit 
inventory in the period. By using the above arguments we can have the following equation: 

( ) ( ) ( ) ( )d d dnI I ab Iθ θ θ λ θ µ θ θ+ = + − −
 

( ) ( ) ( ) ( ){ }or, d dnI I ab Iθ θ θ λ µ θ θ+ − = − −
 

( ) ( ) ( ) ( )
d 0

d
or, Lim

d
nI I

ab I
θ

θ θ θ
λ µ θ

θ→

+ −
= − −

 

( ) ( )dor, .
d

nI I abθ µ θ λ
θ

+ = −  

The general solution of the differential equation is, ( ) e .
nabI A µθλθ

µ
−−

= +  

We now apply the following boundary condition, at 0θ = , we get, ( ) 0.I θ =  

By solving we get, 
nabA λ

µ
−

= − .  

Therefore,                         ( ) ( )1 e .
nabI µθλθ

µ
−−

= −                                (1) 

Putting another boundary condition, i.e. at 1tθ = , ( ) 1I Qθ = , taking up to first degree of µ ,we get the fol-
lowing equation: 

( )

( ) ( )

1

1 1

1 e

.

n

n
n

abQ

ab t ab t
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µ

λ µ λ
µ

−−
= −
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Thereby,                               1
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=
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                                     (2) 

With the help of Equation (1) and by considering up to second degree of µ , the total un-decayed inventory 
during 0θ =  to 1t  we get, 
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Considering the decay of the items, we calculate the deteriorating items during the period as below: 

( ) ( )
11

2
1 1

0 0

e 1d .
2

tt n n
nab abD I ab t
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−  − −
= = − = −  −   
∫                (4) 

Again during 1T t=  to 1T , the inventory decreases at the rate of nab , as there is no production after time 
1t  and inventory reduces due to market demand only. Applying the similar arguments as used before, we get the 

differential equation as mentioned below: 

( ) ( )d .
d

nI I abθ µ θ
θ

+ = −  

The general solution of the differential equation is defined below: 

( ) e .
nabI B µθθ

µ
−−

= +  

Applying the boundary condition at 1Tθ = , we get, ( ) 0I θ = . 

By solving we get, 1e .
n

TabB µ

µ
=  

Therefore,                       ( ) ( )1e .
n n

Tab abI µ θθ
µ µ

−= − +                                 (5) 

Putting another boundary condition, i.e. at 1tθ = , ( ) 1I Qθ = , taking up to first degree of µ ,we get the fol-
lowing equation: 

( ) ( ){ } ( )1 1
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ab

= −                                     (6) 

Now, with the help of Equation (5) and by considering up to the second degree of µ  we get the un-decayed 
inventory during 1T t=  to 1T  as: 
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Considering the decay of the items, we calculate the deteriorating items during the period as below: 

( ) ( )( )
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n

t t

ab abD I ab T t
µθλ λµ θ θ µ θ µ λ

µ µ µ

−  − −
= = − = − −  −   
∫             (8) 

From Equations (2) and (6) we get, 

1 1
1 .n n

Q QT
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−
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QT
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                                   (9) 

Total Cost Function: The cost function can be written in the form given below: 

( ) ( )0 1 1 2 2
1

1

.
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By using Equations (3), (4), (7) and (8) in (10), we get the following result, 
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Now using Equations (2) and (9) we get the value as, 
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      (11) 

The objective is now to find out the order quantity 1Q  that minimizes the total inventory cost for the inven-
tory system. The cost depicts Equation (11). In order to determine the optimum order quantity 1Q∗  and to verify 
that Equation (11) is convex in 1Q , we must show that the following two well known properties hold, 

1) ( )1
1

d 0
d

TC Q
Q

=  and; 

2) ( )
2

1
1

d 0
d

TC Q
Q

> . 

From the convex property 1) i.e. ( )1
1

d 0
d

TC Q
Q

=  we get the equation as below: 
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Therefore, the optimum order quantity, 
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Now again differentiating the Equation (11) with respect to 1Q , we get, 

( )
( )2

0
12 3

1 1
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d

n nK ab ab
TC Q

Q Q

λ

λ

−
=                             (13) 

From Equation (13) we can conclude that the convex property 2) i.e. ( )
2

12
1

d 0
d

TC Q
Q

> , as 0 1, , , ,K a b Qλ  

and nabλ −  all are positive. 
Finally, we can conclude that the equation of total cost function (11) is convex in 1Q . Hence, there is an op-

timal solution in 1Q  for which the total cost function will be minimal.  

4. Numerical Illustration 
1) Situation 1: When n = 1 (Demand is Linear Function) 
In order to give an example with numerical illustration, let us suppose the following parameters, while 1n = : 

0 100, 2, 1, 2, 20K h a b λ= = = = =  and 0.01µ = . 

After putting all the values in Equations (2), (9), (11) and (12) we get the following results: 
• Optimum time 1 2.289t∗ =  units at maximum inventory level.  
• Optimum order interval 1 22.894T ∗ =  units. 
• Total average optimum inventory cost * 8.736TC =  units and.  
• Optimum order quantity 1 41.21Q∗ =  units respectively.  

Putting the values of 1Q  arbitrarily either bigger or lesser than 1Q∗ , we get the inventory cost gradually in-
creased from the total average optimum inventory cost, which is shown in Table 2 and Figure 2 respectively:  

It can be mentioned that 1n =  in the demand function nab  shows the demand function is a linear form 
which is depicted in Figure 1 before.  

2) Situation 2: When n = 2 (Demand is Exponential Function) 
In order to give an example with numerical illustration, let us suppose same parameter we have considered in 

the first situation as below while 2n = : 

0 100, 2, 1, 2, 20K h a b λ= = = = =  and 0.01µ = . 

After putting all the values in equation no (2), (9), (11) and (12) we get the following results: 
• Optimum time 1 2.482t∗ =  units at maximum inventory level.  
• Optimum order interval 1 12.408T ∗ =  units. 
• Total average optimum inventory cost * 16.12TC =  units and.  
• Optimum order quantity 1 39.71Q∗ =  units respectively.  

Putting the values of 1Q  arbitrarily either bigger or lesser than 1Q∗ , we get the inventory cost gradually in-
creased from the total average optimum inventory cost, which is shown in Table 3 and Figure 3 respectively:  

In this case, it is observed that 2n =  in the demand function nab  shows the demand function is an expo-
nential form which is depicted in Figure 4. 
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5. Sensitivity Analysis 
Now assuming the set up cost 0K  fixed, we study the effects of changes of parameters , , , , ,a b hλ µ  and n  
on the optimal length of ordering cycle 1t , optimal time cycle 1T , optimal order quantity, 1Q  and the total av-
erage inventory cost TC  per unit time in the model. We performed the sensitivity analysis by changing each of 
the parameters by +50%, +25%, +10%, −10%, −25% and −50% taking one parameter at a time while keeping 
other parameters unchanged. The details are shown in Table 4. 

 
Table 2. Order quantity verses inventory cost for n = 1 (when demand is linear). 

Inventory (Q1) 35.210 37.210 39.210 41.210 43.210 45.210 47.210 

Total cost (TC) 8.844 8.781 8.747 8.736 8.745 8.773 8.817 

Remarks At a particular inventory level total cost is minimum, before and after this point total cost increases 

 
Table 3. Order quantity verses inventory cost for n = 2 (when demand is exponential). 

Inventory (Q1) 30.71 33.71 36.71 39.71 42.71 45.71 48.71 

Total cost (TC) 16.65 16.34 16.17 16.12 16.16 16.28 16.46 

Remarks At a particular inventory level total cost is minimum, before and after this point total cost increases 

 

 
Figure 2. Quantity verses total cost. 

 

 
Figure 3. Quantity verses total cost. 
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Figure 4. Inventory model with exponential demand. 

 
Table 4. Sensitivity analysis for n = 1 (when demand is linear). 

Parameters Change in % 
Value of 

 
1t
∗  1T ∗  1Q∗  *TC  

λ  

+50 1.472 22.077 50.512 27.545 
+25 1.792 22.397 46.190 8.019 
+10 2.061 22.666 43.295 8.409 
−10 2.576 23.180 38.980 9.136 
−25 3.170 23.775 35.304 9.937 
−50 5.150 25.756 27.905 12.350 

a  

+50 2.424 16.161 40.694 12.534 
+25 2.355 18.839 41.054 10.657 
+10 2.315 21.047 41.183 9.509 
−10 2.264 25.159 41.166 7.958 
−25 2.228 29.701 40.888 6.787 
−50 2.169 43.379 39.146 4.860 

b  

+50 2.424 16.161 40.694 12.534 
+25 2.355 18.839 41.054 10.657 
+10 2.315 21.047 41.183 9.509 
−10 2.264 25.159 41.166 7.958 
−25 2.228 29.701 40.888 6.787 
−50 2.169 43.379 39.146 4.860 

h  

+50 2.289 22.894 33.648 10.920 
+25 2.289 22.894 36.859 9.828 
+10 2.289 22.894 39.292 9.172 
−10 2.289 22.894 43.434 8.299 
−25 2.289 22.894 47.585 7.644 
−50 2.289 22.894 58.280 6.552 

µ  

+50 2.289 22.894 40.502 8.890 
+25 2.289 22.894 40.934 8.795 
+10 2.289 22.894 41.073 8.765 
−10 2.289 22.894 41.345 8.707 
−25 2.289 22.894 41.476 8.680 
−50 2.289 22.894 41.855 8.602 

n  

+50 2.400 16.970 40.833 11.895 
+25 2.339 19.666 41.117 10.193 
+10 2.308 21.533 41.197 9.291 
−10 2.273 24.356 41.190 8.215 
−25 2.249 26.753 41.094 7.497 
−50 2.217 32.357 40.738 6.452 
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Analyzing the results in the above table we can summarize the following observations: 
1) 1t

∗  and 1T ∗  decreases while 1Q∗  increases in the value of the parameter λ . Here λ  is highly sensitive 
to 1Q∗  and moderately sensitive to all other values in the model. 

2) 1t
∗  and *TC  increases and 1T ∗  decreases while 1Q∗  primarily decreases and then again increases with 

increase in the value of the parameter ,a b  and n . Here, a  and b  are highly sensitive to 1Q∗ , 1T ∗  and 
*TC  and those are moderately sensitive to 1t

∗ . In the other hand, n  is highly sensitive to 1T ∗  as well as 1Q∗  
and it is moderately sensitive to 1t

∗  and *TC . 
3) 1Q∗  decreases and *TC  increases while 1t

∗  and 1T ∗  remain unchanged with increase in the value of the 
parameter h . Here h  is highly sensitive to 1Q∗  and moderately sensitive to *TC . 

4) 1Q∗  and *TC  increases while 1t
∗  and 1T ∗  remain unchanged with increase in the value of the parameter 

µ . µ  is moderately sensitive to 1Q∗  and *TC . 
Analyzing the results in Table 5 we can summarize the following observations: 

 
Table 5. Sensitivity analysis for n = 2 (when demand is exponential). 

Parameters Change in % 
Value of 

1t
∗

 1T ∗

 1Q∗

 
*TC  

λ  

+50 1.527 11.453 50.382 14.154 
+25 1.891 11.817 45.387 14.939 
+10 2.206 12.132 42.077 15.582 
−10 2.836 12.762 37.173 16.775 
−25 3.610 13.356 32.991 18.089 
−50 6.618 16.544 24.412 22.034 

a  

+50 2.836 9.454 37.294 22.568 
+25 2.647 10.588 38.547 19.465 
+10 2.545 11.569 39.256 17.486 
−10 2.421 13.450 40.129 14.713 
−25 2.336 15.571 40.694 12.536 
−50 2.206 22,058 41.210 8.742 

b  

+50 3.610 8.021 33.119 30.385 
+25 2.888 9.240 36.969 23.305 
+10 2.620 10.823 38.740 18.946 
−10 2.369 14.624 40.481 13.417 
−25 2.237 19.884 41.168 9.707 
−50 2.090 41.795 39.146 4.854 

h  

+50 2.482 12.408 32.419 20.148 
+25 2.482 12.408 35.514 18.134 
+10 2.482 12.408 37.858 16.925 
−10 2.482 12.408 41.853 15.313 
−25 2.482 12.408 45.848 14.104 
−50 2.482 12.408 56.152 12.089 

µ  

+50 2.482 12.408 39.526 16.192 
+25 2.482 12.408 39.636 16.147 
+10 2.482 12.408 39.671 16.133 
−10 2.482 12.408 39.739 16.105 
−25 2.482 12.408 39.771 16.092 
−50 2.482 12.408 39.864 16.055 

n  

+50 3.309 8.272 34.578 28.029 
+25 2.769 9.787 37.733 21.531 
+10 2.577 11.219 39.030 18.138 
−10 2.404 13.806 40.248 14.292 
−25 2.312 16.350 40.833 11.899 
−50 2.206 22.058 41.210 8.742 



S. I. Ukil et al. 
 

 
884 

1) 1 1,t T∗ ∗  and *TC  decreases while 1Q∗  increases with increase in the value of the parameter λ . Here λ  
is highly sensitive to 1t

∗  as well as 1Q∗  and highly sensitive to 1T ∗  and *TC . 
2) 1 1,t T∗ ∗  and *TC  increases while 1Q∗  decreases with increase in the value of the parameter a . Here a  

is highly sensitive to 1T ∗  as well as *TC  and moderately sensitive to 1t
∗  and 1Q∗ . 

3) 1t
∗  and *TC  increases while 1T ∗  and 1Q∗  decreases with increase in the value of the parameter b  and 

n . Here b  and n  are highly sensitive to 1T ∗  as well as *TC  and moderately sensitive to 1t
∗  and 1Q∗ . 

4) 1Q∗  decreases and *TC  increases while *
1t  and 1T ∗  remain unchanged with increase in the value of 

the parameter h  and µ . 

6. Conclusion 
In the present context of modern age, without the inventory management, the business institution cannot think 
ahead. By the proper management and thereby developing the suitable inventory model, the institution only can 
save its production inventory cost. Market demand is always fluctuate. The model is developed considering this 
demand. Maybe, today the market demand is very high and tomorrow it is low. The inventory model we have 
proposed in this paper can be suitable to meet both the demands linear or exponential. Because of deterioration, 
this model also gives the correct result in which the materials have the finite shelf-life. In the proposed model, 
the production rate and the decay have been considered constant all through. The model develops an algorithm 
to determine the optimum ordering cost, total average inventory cost and optimum time cycle. The model could 
establish that with a particular order level the inventory cost is minimal. Here, for n = 1, we got 1 41.210Q∗ =  
units and total average inventory cost * 8.736TC =  units and for n = 2, we got 1 39.705Q∗ =  units and total 
average inventory cost * 16.119TC =  units, before and after this point total cost increases sharply. 
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